
School of Computer Science and Electronic Engineering

College of Environmental Sciences and Engineering

Detecting specific foods in MRI scans
using TensorFlow™and RetinaNet

implemented in Python™

Joshua Gardner

Submitted in partial satisfaction of the requirements for the

Degree of Bachelor of Science

in Computer Science

Supervisor Dr Franck Vidal

April 2020

Acknowledgements

Special thanks to Dr Évelyne Lutton from France’s National Research Insti-

tute for Agriculture, Food and Environment (INRAE) and Prof François Boué

from French National Centre for Scientific Research (CNRS) for supplying the

image data. And an even more appreciated thank you to my supervisor and

tutor, Dr Franck Vidal, for being extremely supportive and helpful in aiding

me in my dissertation. Supplying me with his time and knowledge to help me

succeed.

Statement of Originality

The work presented in this thesis/dissertation is entirely from the

studies of the individual student, except where otherwise stated. Where

derivations are presented and the origin of the work is either wholly or in

part from other sources, then full reference is given to the original author.

This work has not been presented previously for any degree, nor is it at

present under consideration by any other degree awarding body.

Student:

Joshua Gardner

Statement of Availability

I hereby acknowledge the availability of any part of this thesis/dis-

sertation for viewing, photocopying or incorporation into future studies,

providing that full reference is given to the origins of any information

contained herein. I further give permission for a copy of this work to

be deposited with the Bangor University Institutional Digital Repository,

and/or in any other repository authorised for use by Bangor University

and where necessary have gained the required permissions for the use of

third party material. I acknowledge that Bangor University may make the

title and a summary of this thesis/dissertation freely available.

Student:

Joshua Gardner

Abstract

Object detection has played an important role and challenge in computer

vision being utilised in many diverse technologies and applications such as

facial recognition, security, automated driving and medical imaging. Medical

imaging has allowed us to understand how our bodies fundamentally function

through non-invasive techniques, such as magnetic resonance imaging (MRI),

computed tomography (CT) scans and X-Rays. It has also allowed us to study

how entities in our bodies are consumed and react in us. Our lives have

been improved with this understanding, diagnoses and treatments can be

performed through these techniques. Analysing scans can be time consuming

and often when looking for specific problems, there is potential missing other

ailments.

In medical imaging, object detection has a multitude of applications; it

can help quickly and accurately diagnose patients, automatically detect a

multitude of conditions and illnesses such as cancers and abnormalities within

organs. It can help us track objects like drugs or food in the digestive system

or other pathways. With all this data being collected daily, machine and deep

learning techniques could be used to quickly develop neural networks to

detect them. One use of object detection is in the study of digestion of foods

in the stomach using MRI scans. Through this we could learn how certain

foods pass through the digestive system and how it reacts.

We will be applying object detection through the use of Neural Networks

to detect food, specifically frozen peas. This to allow automation of a larger

research study into the monitoring of stomach content with the aim of under-

standing digestion to help develop future foods to potentially aid in food crises.

To do this we will be using a Keras implementation of RetinaNet developed

by Fizyr as described in Focal Loss for Dense Object Detection developed

at Facebook AI Research (FAIR). Food detection in MRI scans through Neural

networks has proven to be possible, as the network we trained produced a

precision of true positives of 0.81 and a total recall of 0.454. These

scores could be improved by an increase of training data sets and is possibly

low due to a number of hard examples obscured in the MRI Scans which could

be improved upon through image processing.

Contents

1 Introduction 1

1.1 Medical Imaging . 1

1.2 Applications of object detection in medical imaging 2

1.3 Project Goals . 2

1.4 Contents . 3

2 Object Detection 4

2.1 Challenges with object detection 4

2.2 Machine Learning approach . 5

2.3 Deep Learning . 7

3 RetinaNet 12

3.1 Feature Pyramid Networks . 12

3.2 Focal Loss . 13

3.3 Analysis on RetinaNet . 14

4 Detecting Peas in MRI scans of the stomach 16

4.1 Preparing the data . 16

4.2 Classifying the peas . 18

4.3 Testing the model . 20

4.4 Analysing the data . 21

5 Results and evaluation 22

6 Conclusion 26

7 Appendix 27

List of Figures

1.1 Example of MRI image from the data set 2

2.1 Example of a sliding window . 4

2.2 Example of an CNN object detection 5

2.3 Haar function in Viola-Jones algorithm 6

2.4 Feature detection in Viola-Jones algorithm 7

2.5 Representation of how HOG works 7

2.6 Example of the COCO data set 8

2.7 Example of how R-CNN works . 8

2.8 Example of how Fast R-CNN works 9

2.9 Example of how R-CNN works . 10

2.10 Example of how Faster R-CNN works 10

2.11 Example of how YOLO works . 11

2.12 Example of how YOLO prediction predicts objects 11

3.1 Comparison of RetinaNet mAP 12

3.2 Feature Pyramids . 13

3.3 Example of focal loss . 14

4.1 Creating Directories . 17

4.2 Created Directories . 17

4.3 Locations of the peas in MRI Scan 18

4.4 Classifying the peas in LabelImg 19

4.5 Classification data of all peas . 20

4.6 Detected Peas in a ROI . 20

4.7 Comparison of detected peas to actual locations 21

5.1 Example of the results . 24

5.2 Example where Neural Net detected lots of false positives 25

List of Tables

5.1 Results . 22

Chapter 1

Introduction

Object detection has played an important role and challenge in computer

vision, with massive developments in the last decade. In the field of ob-

ject detection, machine learning algorithms have been developed such as

Viola–Jones object detection framework and histogram of oriented gradients

(HOG). Being used as implementations of facial recognition and human de-

tection. Currently, deep learning techniques are being used over machine

learning technique. Examples of deep learning include Convolutional neural

network (CNN) with improvements on the core ideas like Regions with Con-

volutional Neural Network (R-CNN) and many other iterations. These devel-

opments are credited to the increase in performance in hardware such as

dedicated graphics card, cloud computing and cost being reduced as the

technology became more widespread. Object detection has many diverse

applications from object tracking, character recognition, automated driving,

robotics, manufacturing and medical imaging.

1.1 Medical Imaging

Medical imaging is incredibly important in medical analysis, allowing doc-

tors to complete diagnoses of a patient’s internals that are usually hidden

by skin tissue and bones. Imaging techniques such as magnetic resonance

imaging (MRI), X-RAY, computed tomography (CT) and Ultrasound scans are

used to generate visual representations of internal structures such as organs

and bones. These techniques are non-intrusive and the generated images

can reveal abnormalities and illnesses such as cancers. These results can

then be used to apply proper treatment and therapy for the correct cause.

1

Medical imaging can also be used for research purposes such as studying the

human body and its functions, analysing digestion and blood flow.

Figure 1.1: Example of MRI image from the data set

1.2 Applications of object detection in med-

ical imaging

Object Detection could automatically detect a multitude of conditions and

illnesses such as cancers and abnormalities within organs. With all this data

being collected daily, deep learning techniques could be used to quickly

develop neural networks to detect them. A CNN may potentially, if trained

well enough, be more accurate of detecting malignant tumours or any other

condition than humans. If a network is trained for multitude of different

diseases it could then also detect any other aliments that are present. Object

detection could make treatment quicker, potentially cheaper by reducing

man hours and free up researchers and hospital staffs time.

1.3 Project Goals

The larger goal of this project is to be able to analyse the digestion of foods

inside the stomach to see how certain foods react and how long they take

to be digested. However, in this thesis we will be specifically looking at

how to detect food in images of MRI scans of the stomach.

Introduction 2

To achieve this goal, we will aim to fulfil these objectives:

Using computer vision techniques such as deep learning and neural

networks we can train object detection models to be able to analyse

MRI scans of stomachs and hopefully detect specific foods inside it. In this

project frozen peas have been used as part of a larger research project to

see how small spherical foods are digested for potential research into the

future of foods. We will be implementing this through a combination of

Google’s TensorFlow library with a Keras Implementation of RetinaNet

coded in Python. These software libraries provide many computer vision

tools specifically aimed at deep learning and developing deep neural networks

capable of object detection, object classification etc. Then we will test our

Neural network (NN) by detecting peas in our testing data set. We can validate

these results against the actual locations in the images. We can then analyse

the accuracy of our network in the form of:

Precision: where tp is the number of true positives and fp is the number of

false positives

p =
tp

tp+ fp
(1.1)

Recall: where fn is the number of false negatives

p =
tp

tp+ fn
(1.2)

1.4 Contents

In Chapter 2 we will be discussing object detection and the various solutions

available such as machine learning and deep learning. In Chapter 4 we will

be discussing how I used these techniques to solve our problem of detecting

peas in MRI scans.

Introduction 3

Chapter 2

Object Detection

2.1 Challenges with object detection

Object Detection is a computational challenge, producing an entire re-

search field in computer vision alone. Object detection traditionally works by

the use of a sliding window [1], where features are extracted using multiple

aspect ratios to analyse the region and detect objects. Figure 2.1 (reproduced

from [2]) shows an example of how a sliding window is used to detect objects.

Figure 2.1: Example of a sliding window

Traditional techniques included using machine learning algorithms to de-

tect features in images through image processing techniques. Detection

methods like Histogram of oriented gradients (HOG) rely on processing tech-

niques to identify people from their shape in the image, whereas the Viola-

Jones algorithm focuses detecting specific facial features. This is not always

possible for certain objects and would require us to use many different tech-

niques and algorithms to detect several different objects. CNN solves this

problem. By training a NN on a data set of training images, it can learn to

detect, classify and recognise many different object types.The major draw-

back is that sometimes for the best and most accurate detectors there is

a requirement for large amounts of training data. Which would have to be

hand labelled and can be possibly hard to get. For example training CNN on

4

medical images like we are doing we would need access to this data, which is

often private or only available as part of a larger research project. Figure 2.2

reproduced from [3] showing objects being detected with the bounding boxes

surrounding them.

Figure 2.2: Example of an CNN object detection

2.2 Machine Learning approach

In machine learning the use of computational statistics and computer vision

techniques to algorithmically detect features and objects through statistical

comparisons on the pixel level. Typically through image intensity or other

statistical data.

The Viola Jones object detection framework detects objects by using simple

features. Originally used for facial recognition, the algorithm would find

features of the face like eyebrows, lips, nose, and eyes by using Haar func-

tions [4]. Example in figure 2.3 (reproduced after Viola et al. [4]). Haar

functions are very similar to kernels used in computer vision techniques like

line detection, filtering, and CNN. These functions act like a sliding window,

going over regions of the image and doing some form of comparison or

calculation.

Object Detection 5

Figure 2.3: Haar function in Viola-Jones algorithm

Haar features work by computing the difference of image intensity between

the sum of two sets of regions. Where ii(x,y) is the image intensity for each

region, i(x’,y’) being the pixel values for each position in the region

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (2.1)

In facial recognition, this is done to detect features such as eyebrows by

comparing the estimated region the eyebrows are to the skin around it.

Typically done in grey scale, the eyebrow intensity would be lower, or darker

in colour terms, than the surrounding skin which would be whiter or a high

intensity. This same method can be applied to detecting the eyes from the

cheeks, the eyes, and the bridge of the nose. All these features must be

detected for the algorithm to determine that the image contains a face. See

figure 2.4 (reproduced after Bukis et al [5]) for example of how the algorithm

working.

HOG differs from the Viola-Jones algorithm and many deep learning meth-

ods of object detection. In that it does not try to detect or determine objects

based specific features or learned weights. HOG detects a global feature; it

detects the whole shape of a person or car for example. The concept being

that an object’s shape within an image can be determined by the distribution

of intensity gradients. HOG works similarly to edge detection and will detect

humans silhouette from its contours. The image is divided into small uniform

Object Detection 6

Figure 2.4: Feature detection in Viola-Jones algorithm

regions. A histogram of gradient directions is compiled for each region using

the sliding window method going over these regions. A descriptor is formed

from a combination of histograms [6]. HOG is best suited for human detection

where people are upright and mostly visible. Figure 2.5(b,f) (reproduced by

Dalal et al [6]) shows how HOG detects humans from the outline shape in the

image.

Figure 2.5: Representation of how HOG works

2.3 Deep Learning

Deep learning techniques of object detection require training a CNN to

detect specific classifies on images. This requires collecting a set of data and

typically hand classifying the images. For the best and most accurate results

a large data set of a good ratio of easy and hard examples are required, its

even good to include lots of negative examples. There are many open source

data sets that exist for training networks such as Common Objects in Context

(COCO) which contains a vast amount of pre-classified images [7]. Figure 2.6

(reproduced after Lin et al [7]) shows an example of their data set. COCO and

other data sets such as the PASCAL Visual Object Classes Challenge (VOC),

are often used as testing sets to compare object detection frame works mean

Object Detection 7

Average Precision (mAP). COCO and many other data sets are often broad

and would not be useful for more specific tasks like our own.

Figure 2.6: Example of the COCO data set

With the popularisation of CNN, many research projects are being produced

in this field and they often grant public access to their object detection

frameworks. This gives us a wide range of trainable networks optimised for

object detection, that are constantly being improved upon and bested by

other network models. One of such models is R-CNN.

One major problem with Convolutional Neural Networks is that it does

not know how many potential objects are in an image. Rather than trying

to potentially detect for an object in every single bit of the image an extra

step is implemented to reduce the area needed to be fed into the Neural

network. In the work of Ross Girshick et al [8] they explained their method

of Regions with Convolutional Neural Network. R-CNN is a two-stage object

detector, in the first stage it proposes using a selective search to extract 2000

regions proposals and then using a greedy algorithm to recursively combine

similar regions into one larger region. In the second stage a CNN is then used

to compute features for each region proposal and then is classified by an

Support vector machine (SVM). This is demonstrated in figure 2.7 reproduced

after Ross Girshick et al [8].

Figure 2.7: Example of how R-CNN works

However, the results from Girshick et al show that whilst producing then

highly accurate results of a mAP of 53.7% on the VOC 2010 set, computing

2000 region proposals through selective search is long and slow. Each of

Object Detection 8

these proposals then must go through a ConvNet forward pass, which for

2000 images will take a considerable amount of time. The results show that

RCNN takes 13 seconds per image on GPUs and 53 seconds on a CPU. This

is relatively quite slow, especially when you have large amounts of testing

images. The selective search algorithm is fixed, so cannot learn. Meaning the

region extraction process cannot be improved upon. RCNN cannot be used

for real time object detection, which while is not necessary for my project

speed and efficiency is still preferred. Improvements and iterations of RCNN

exist. Fast and Faster R-CNN attempt to solve the time issue with RCNN.

Ross Girshick et al [9] improved upon R-CNN with Fast R-CNN. Instead of

extracting region proposals first, Fast R-CNN uses the input image and feeds

it to the CNN to produce a convolutional feature map. Then in the Region of

Interest (ROI) feature vector, the feature map is fed into a ROI pooling layer

which identifies region proposals and reshapes them into fixed size squares.

The region proposals are then fed into a fully connected layer. A softmax layer

is used to predict the class of the proposed region and the bounding box. This

is demonstrated in figure 2.8 reproduced after Ross Girshick et al [9].

Figure 2.8: Example of how Fast R-CNN works

Fast R-CNN improves upon R-CNN as it no longer needs to feed 2000 regions

into the CNN, convolution is only done once. Its also produced an increased

mAP of 66.1% compared to R-CNN’s 53.7% How ever region proposals are

still a bottleneck for fast R-CNN as it still uses selective search. This is show

as Fast R-CNN with region proposal takes 2.3 seconds per image and without

it the forward pass takes 0.32 seconds. Results shown in 2.9 reproduced from

Girshick et al [9]

Object Detection 9

Figure 2.9: Example of how R-CNN works

Shaoqing et al [10] developed a faster real time implementation of R-

CNN called Faster R-CNN. Faster R-CNN uses an object detection algorithm

to replace the slow and time-consuming selective search. Like Fast R-CNN

it the input image is fed into a unified network to produce a feature map

but then used a separate network, called Region Proposal Network (RPN) to

predict region proposals. Using a network for region proposals means that

the network can learn and improve upon proposals. They are then added into

a ROI pooling layer to be reshaped before they are classified, and then the

bounding boxes are predicted. Figure 2.10 is reproduced from Shaoqing et

al [10].

Figure 2.10: Example of how Faster R-CNN works

Faster R-CNN produces a mAP of 75.9% with a 0.198 seconds per image.

This is due to fewer region proposals (300) enabling Faster R-CNN to have an

almost real time detection of 17 frames per second (fps)

Another use of deep learning is using one stage object detectors, an

example of this is the You Only Look Once (YOLO) model developed by Redmon

Object Detection 10

et al [11]. YOLO uses a single Fully CNN to predict bounding boxes and the

class probabilities.

Figure 2.11: Example of how YOLO works

Generating region proposals and then classify these regions like in RCNN,

is slow and hard to optimise as each individual step is a separate part. YOLO

instead views object detection as a single regression problem, only looking at

the image once to predict what objects are present and their locations. This

unified model is extremely fast, running at 45 frames per second with no prior

batch processing, and the faster version sacrifices mAP but can run up to 150

frames. It is also a lot more accurate with a mAP of 63.4%. Using a single CNN,

YOLO does this by predicting areas that have high probabilities of containing

objects and then predicts bounding boxes and class probabilities per box.

Figures 2.11 and 2.12 show how YOLO object detection works reproduced

from Redmon et al [11]

Figure 2.12: Example of how YOLO prediction predicts objects

Object Detection 11

Chapter 3

RetinaNet

Typically, one stage detectors like YOLO produce lower mAP scores com-

pared to two stage detectors, such as R-CNN and its iterations. Research done

by Tsung-Yi et al [12, 13] at Facebook AI Research (FAIR) has accumulated

to produce a brand new state of the art one stage object detector capable

of matching mAP scores of two-stage detectors. RetinaNet achieves this by

using focal loss instead of cross entropy for learning, combined with a Res-

Net CNN for deep feature extraction from a Feature Pyramid Network (FPN).

This has allowed RetinaNet to achieve mAP scores of 32.5-37.8%. Figure 3.1

reproduced from Tsung-Yi et al [12].

Figure 3.1: Comparison of RetinaNet mAP

3.1 Feature Pyramid Networks

One challenge in object detection is that it objects have a variety of scales.

Featurised image pyramids formulate the basis of the solution to this problem.

The pyramids are scale invariant meaning that objects at different scales can

be shifted up and down in the pyramid model, allowing objects at a different

scales to be detected. This model is still prevalent in many detection methods

such as Fast and Faster R-CNN. They were heavily used in older methods like

12

HOG. Recent detection systems use a single feature map to quickly predict

objects on a single input scale fig 3.2(b). Figure 3.2 reproduced from Tsung-Yi

et al [13].

Figure 3.2: Feature Pyramids

Tsung-Yi et al [13] suggest using a feature pyramid network 3.2(d) to extract

features on all scales whilst predicting objects as fast as other models (see

fig 3.2(b,c)) whilst being more accurate. FPN achieves higher accuracy by

using a multi-scale feature representation in which all levels are semantically

strong. This is represented in figure 3.2 by the thicker blue outlines.

Using a CNN as a backbone to create an in network feature pyramid,

Tsung-Yi et al have produced a feature pyramid (fig 3.2 (d)) that has rich

semantics at all levels which is built quickly from a single input image scale,

without sacrificing representational power, speed or memory. By combining

low resolution, semantically strong features with high resolution, semantically

weak features by using a top down approach and lateral connections.

3.2 Focal Loss

In two stage detectors class balance is addressed by a two stage cascade

and sampling heuristics. Examples of narrowing down candidate locations

and filter out background samples, R-CNN uses selective search whilst Faster

R-CNN uses a RPN. Sampling heuristics are then performed to maintain a

balance between the foreground and the background.

One stage detectors must process a larger set of dense candidate locations.

Sampling heuristics prove to be ineffective due to there still being a class

imbalance towards easily classified examples. Tsung-Yi et al [12] proposes

RetinaNet 13

using a new loss function to effectively deal with class imbalance. Using a

dynamically scaled cross entropy loss, where the scaling factor decreases to

zero as confidence in the correct class increases see figure 3.3 (Reproduced

from Tsung-Yi et al [12]). The scaling factor automatically down weights the

contribution of easy examples during training to increase a focus on hard

examples.

Figure 3.3: Example of focal loss

Standard cross entropy uses a weighting factor α to address class imbal-

ance. Balanced cross entropy loss is defined as:

CE(pt) = −αt log(pt).

α balances the importance of positive and negative examples but does

bot differentiate between easy and hard examples. Tsung-Yi et al proposes to

reshape the loss function to down weight easy examples. Using a modulating

factor (1− pt)
γ with a cross entropy, with a tune-able parameter γ to change

how examples are down weighted. Balanced focal loss is then defined as:

FL(pt) = −αt(1− pt)
γ log(pt).

3.3 Analysis on RetinaNet

The combination of using a CNN backbone with RPN to gather rich se-

mantics and solve class balance through focal loss to focus on hard examples

for training, the RetinaNet model is a fast and accurate object detection

framework. With a focus on harder examples like small low resolution objects,

RetinaNet 14

RetinaNet is an ideal yet simple one-stage detector. As the data set is rel-

atively small and there are many small hard examples, I believe RetinaNet

would be more than capable of effectively detecting peas and other foods in

MRI scans of stomachs.

RetinaNet 15

Chapter 4

Detecting Peas in MRI scans of the

stomach

To implement these deep learning techniques and the RetinaNet detection

framework to produce a ResNet model trained to detect the peas in MRI scans,

there is essentially two major steps: Preparing the data and feeding the data

to the neural network. To prepare the data we need to extract and organise

the files so that it is easier to easier to access, so that we can begin training.

Evaluating the data consists of detecting peas in the test images and the

comparing them to the known locations to calculate the precision and recall.

Precision: where tp is the number of true positives and fp is the number of

false positives

p =
tp

tp+ fp
(4.1)

Recall: where fn is the number of false negatives

p =
tp

tp+ fn
(4.2)

4.1 Preparing the data

The first step of preparing the data is to extracting it. The data collected

had to be organised in data sets for the different subjects in a way more

helpful for researchers. This is problematic to traverse efficiently and quickly

access all the data to be trained. We must extract the data that we need

16

to organised directories for specific locations and rename some of files to

distinguish which data is for what image, as there are multiple same named

files. We use prepareData.py to traverse the data set and copy the files into

our more organised files. All the code for this is in the appendix (chapter 7).

prepareData.py is used through the command line issuing paramets such

as the directory the data is located. This is because there is no need for an

intuitive user interface to quickly traverse all the data. Figure 4.1 shows the

command line interface to use prepareData.py and the figure 4.2 shows the

results it produces.

Figure 4.1: Creating Directories

Figure 4.2: Created Directories

Preparing the data into these organised files so that we can quickly ac-

cesses the specific files we need and only these files. Each slice also contains

Tab-separated values (TSV) files of the locations of each pea estimated by the

researchers. These are renamed to the representative ROI image that will be

used to train the neural network The images are split into training and testing

images using leave p out cross validation where p is 22 out of a data set

of 57 images. Instead of using Leave one out cross validation, which would

ultimately produce a more accurate trained object detector, Leave p out was

used due to the vast variety in the MRI scans where there is seemingly more

objects in the stomach. This was done so there was a variety of testing data to

see how accurate the results where compared to MRI scans with less “noise”

in the ROI.

Detecting Peas in MRI scans of the stomach 17

4.2 Classifying the peas

The neural network requires information of the object locations to train

the model. We will need to classify each object in the image manually. To

do this we use a program called LabelImg.Figure 4.4 shows an example of us

classifying the images. This will create Extensible Markup Language (XML)

files containing pixel coordinates of every bounding box of the peas in the

training images. To make this easier I have programmed a script that will

display the locations of the peas using the matplotlib library. locatepeas.py

displays the locations on the image, using the related tsv file, so creating

the labels would be easier. Figure 4.3 shows an example of the peas being

displayed.

Figure 4.3: Locations of the peas in MRI Scan

Detecting Peas in MRI scans of the stomach 18

Figure 4.4: Classifying the peas in LabelImg

RetinaNet does not use XML files for training as this would require to much

traversing by itself, so we need to parse the data into a more readable Comma-

Separated Values (CSV) file containing the location of every pea in every file.

XML to CSV.py will parse every XML file and add it to train labels.csv as

well as create a classes.csv containing the classes and its index. As we are

only detecting for one class, there is only pea at its index 0. Although this

could be expanded upon if future work requires multiple types of food to

be detected. Train lables.csv contains the image path, the 4 coordinates

of the bounding box (x1, y1, x2, y2) and the class of each bounding box

produced for every pea in the images.

The CSV contains the appropriate data to begin training neural network.

The Keras implementation of RetinaNet provides a train.py file which takes

the data provided and using its pre-trained ResNet models to extract the

features. The model used in this project was trained in batches of 8 and 100

steps for 10 epochs. This step can take a lot of time even if using a GPU to

train the neural net. The model will train the model in batches of eight, ten

times. For each epoch there will be a snapshot of the trained model with the

last one being the final version of the model.

Detecting Peas in MRI scans of the stomach 19

Figure 4.5: Classification data of all peas

4.3 Testing the model

Now the model has been trained, it should be able to successfully detect

peas in the MRI scans. Using RetinaNets built in functions we can pre-process

test images and detect the objects in the images, returning bounding boxes

and the prediction score for each pea. detectPeas.py will automatically

generate images with the bounding boxes and scores for each pea detected

and save them to the Detected Peas directory for future analysis. I have set

the threshold score to be 0.6, so that only objects with a prediction score of

0.6 or above will be displayed on the image

Figure 4.6: Detected Peas in a ROI

Detecting Peas in MRI scans of the stomach 20

4.4 Analysing the data

We will need to analyse the results generated from the model against the

actual locations in the images. This will show how accurate the model is at

detecting peas in the models. Running displayResults.py will display both

images of the detected peas and the images with all the pea locations plotted

for each scan.

Figure 4.7: Comparison of detected peas to actual locations

Detecting Peas in MRI scans of the stomach 21

Chapter 5

Results and evaluation

To work out the neural networks accuracy we must collect the positive

results, the total number of actual peas and calculate the number of true

positives. Then using this information, we can calculate the precision and

recall.

Precision and recall are calculated mathematically through the formulas:

Precision: where tp is the number of true positives and fp is the number

of false positives

p =
tp

tp+ fp
(5.1)

Recall: where fn is the number of false negatives

p =
tp

tp+ fn
(5.2)

Table 5.1: Results

22

In table 5.1 true positives are all the correctly detected Peas and the total

positives are all the detected objects generated by the neural network. The

total number of actual cases is the number of peas actually in the images.

The neural network has developed a model with a precision of positively

detecting peas in MRI scans of the stomach of 0.81 and a recall of detecting

all the actual peas of 0.454

The results show the model can clearly detect peas in MRI scans, however

has problems with positively detecting all the peas. What causes this issue?

The recall of detection is only 0.454 so only less than half the peas are being

detected. This may be due to how difficult it can be for neural networks to

detect hard examples. Many of these peas are around a 10 pixel resolution

with the largest being 20 pixels. Another factor may be that even to the

human eye many of these peas can not even be seen. Many of these peas

blur into other surrounding objects in the MRI scans so the neural net would

not be able to detect the peas in the image at all.

In some results the model detects many false positives that do not exist

in the image at all, see figure 5.1. The model may be detecting other foods

in the image as there are a lot of similarly shaped foods. There is only one

pea in this MRI scan and it does detect it. Most of the MRI scans are relatively

empty but this shows how many spherical objects in the stomach can produce

false results. This is why I used a large testing set as the scans are varied.

To improve the object detector more data is needed as more scans will

produce a better model to be trained, and should be more accurate. Possibly,

retraining the model with One left out cross validation may prove better

results. Consuming all the data to be trained par one to test it, preferably

an MRI scan with lots of peas. However we would not know if the results are

accurate in images such as fig 4.3 unless we tested against this specific image.

Image ROI 149 76 (fig 5.2) produced positive results for 10 objects with only

one pea being in the image, however it did detect that pea. Another method I

believe that could make the model more accurate is by pre processing the

Results and evaluation 23

images so that they are not grey scale. This might improved accuracy as

then there would difference in image intensity, which may change how the

network is learning on the images.

Figure 5.1: Example of the results

Results and evaluation 24

Figure 5.2: Example where Neural Net detected lots of false positives

Results and evaluation 25

Chapter 6

Conclusion

In conclusion, RetinaNet is capable of detecting specific foods in MRI scans

of stomachs. The network produced produces a precision of 0.81 detecting a

majority of true positives(See table 5.1). However its Recall value is too low at

0.45, producing too many false negatives, the network needs more training

and more data to be viable to be used commercially, in industry or research

at its current capabilities. By using image processing techniques and with

more training specific foods could easily be detected and not just peas.

26

Chapter 7

Appendix

prepareData.py
1 ##

2 #Author: Josh Gardner

3 #Script to parse dataset files, extracting and renaming them

4 #

5 ##

6 import argparse # To process the command line arguments

7 import os # To parse the filesystem and create directories

8 import sys # To print the standard output of errors

9 import numpy as np # to load txt files

10 import cv2

11 import errno # To handles errors when file are copied and directories created

12 import shutil # To copy files

13

14 def createDir(aDirectory):

15 try:

16 os.mkdir(aDirectory)

17 except OSError as e:

18 if e.errno != errno.EEXIST:

19 print ("Creation of the directory %s failed" % aDirectory, file=sys.stderr)

20 raise

21 #moves tsv files and renames them according to related image file

22 def moveTSV(aName, aDir, aType):

23 tsv_name = str(aName[:−4] + ".tsv")

24 print(tsv_name)

25 shutil.copyfile(aDir,os.path.join(args.newDir[0],"Slices",aType,tsv_name))

26

27 def prepare_data(aSource, aDir):

28 pos_count = 0

29 neg_count = 0

30 slice_count = 0

31 for dataset in os.listdir(aSource):

32 #loops through all path directories extracting the data into correct directories to be used

33 if os.path.isdir(os.path.join(aSource,dataset)):

34 if dataset[:7] == "DATASET":

35 dataset_id = dataset[7:]

36 dataset_path = os.path.join(aSource,dataset)

37 for slices in os.listdir(dataset_path):

38 if os.path.isdir(os.path.join(dataset_path,slices)):

39 if slices[:6] == "slice_":

40 slice_id = slices[6:]

41 slice_path = os.path.join(dataset_path,slices)

42 for labels in os.listdir(slice_path):

43 if (labels[:6] == "slice_" or labels[:3]=="ROI") and labels[−4:] == ".png":

44 slice_count+=1

45 if (int(dataset[7:])%2)==0: #splits data into training and data sets

46 shutil.copyfile(os.path.join(slice_path,labels), os.path.join(aDir,"Slices","train",labels))

47 if labels[:3] == "ROI" and os.path.exists(os.path.join(slice_path,labels,"pos","pos.tsv")) == True:

48 moveTSV(labels,os.path.join(slice_path,labels,"pos","pos.tsv"),"train")

49 else:

50 shutil.copyfile(os.path.join(slice_path,labels), os.path.join(aDir,"Slices","test",labels))

27

51 if labels[:3] == "ROI" and os.path.exists(os.path.join(slice_path,labels,"pos","pos.tsv")) == True:

52 moveTSV(labels,os.path.join(slice_path,labels,"pos","pos.tsv"),"test")

53 #moves and renames images of peas

54 elif os.path.isdir(os.path.join(slice_path, labels)):

55 if labels == "pos" or labels == "neg":

56 labels_path = os.path.join(slice_path, labels)

57 for img in os.listdir(labels_path):

58 if img[−4:] == ".png":

59 if labels == "pos":

60 pos_count+=1

61 image = cv2.cvtColor(cv2.imread(os.path.join(labels_path, img)), cv2.COLOR_BGR2GRAY)

62 imgName="Pea_"+str(pos_count)+".png"

63 if (int(dataset[7:])%2)==0:

64 cv2.imwrite(os.path.join(aDir,"Peas","train",imgName),image)

65 else:

66 cv2.imwrite(os.path.join(aDir,"Peas","test",imgName),image)

67 elif labels == "neg":

68 neg_count+=1

69 image = cv2.cvtColor(cv2.imread(os.path.join(labels_path, img)), cv2.COLOR_BGR2GRAY)

70 imgName="neg_"+str(neg_count)+".png"

71 cv2.imwrite(os.path.join(aDir,"Neg",imgName),image)

72

73 print("Prepared and Moved", pos_count, "images and moved", neg_count, "negative images")

74 print("Moved", slice_count, "Slices")

75

76

77 parser = argparse.ArgumentParser(description=’Prepare and Copy images to new directory’)

78 parser.add_argument(’−−dir’, help=’Where the data to copy is’, nargs=1, type=str, required=True)

79 args = parser.parse_args()

80 newPath = "Data"

81 createDir(newPath)

82 createDir(os.path.join(newPath,"Peas"))

83 createDir(os.path.join(newPath,"Neg"))

84 createDir(os.path.join(newPath,"Slices"))

85 createDir(os.path.join(newPath,"Detected"))

86 createDir(os.path.join(newPath,"Located_Peas"))

87 createDir(os.path.join(newPath,"Located_Peas","train"))

88 createDir(os.path.join(newPath,"Located_Peas","test"))

89 createDir(os.path.join(newPath,"Peas","train"))

90 createDir(os.path.join(newPath,"Peas","test"))

91 createDir(os.path.join(newPath,"Slices","train"))

92 createDir(os.path.join(newPath,"Slices","test"))

93 prepare_data(args.dir[0],newPath)

pea_locator.py
1 ##

2 # Author: Josh Gardner

3 # Displays and saves locations of peas in an image

4 ##

5 import matplotlib.pyplot as plt

6 import cv2

7 import csv

8 import argparse

9 import os

10

11 #reads tsv file to get pea coordinates and displays them on the image.

12 def locatePea(name):

13 img=name + ".png"

14 tsv=name + ".tsv"

15 im = plt.imread(os.path.join(path,img))

16 plt.imshow(im)

17 with open(os.path.join(path,tsv)) as tsvfile:

18 reader = csv.reader(tsvfile, delimiter=’\t’)

19 next(reader)

20 for row in reader:

21 x = int(row[1])

Appendix 28

22 y = int(row[2])

23 plt.scatter([x], [y])

24 return im

25

26 parser = argparse.ArgumentParser(description=’Display the locations of peas on ROI’)

27 parser.add_argument(’−−dir’, help=’Where the images are’, nargs=1, type=str, required=True)

28 args = parser.parse_args()

29 path = args.dir[0]

30 #see if new folder path is test or train

31 if path[−5:] == "train":

32 targ = path[−5:]

33 else:

34 targ = path[−4:]

35 for img in os.listdir(path):

36 if img[:3] == "ROI" and img[−4:] == ".png":

37 im = locatePea(img[:−4])

38 plt.axis(’off’)

39 plt.savefig(os.path.join("Data","Located_Peas",targ,img))

40 plt.title(img[:−4])

41 plt.show()

xml_to_csv.py
1 ##

2 #Author: Josh Gardner

3 #Parses XML data into a pandas DataFrame to be saved in a csv

4 #

5 ##

6 import os

7 import glob

8 import pandas as pd

9 import xml.etree.ElementTree as ET

10 import argparse

11 import csv

12

13 def xml_to_csv(path):

14 #function to parse xml files and extract the data to a dataframe

15 xml_list = []

16 for xml_file in glob.glob(path + ’/*.xml’):

17 tree = ET.parse(xml_file)

18 root = tree.getroot()

19 for member in root.findall(’object’):

20 value = (root.find(’path’).text,

21 int(member[4][0].text),

22 int(member[4][1].text),

23 int(member[4][2].text),

24 int(member[4][3].text),

25 member[0].text

26)

27 xml_list.append(value)

28 column_name = [’path’, ’x1’, ’y1’, ’x2’, ’y2’, ’class’]

29 xml_df = pd.DataFrame(xml_list, columns=column_name)

30 return xml_df

31

32 path = "Data/Slices/train"

33 xml_df = xml_to_csv(path)

34 xml_df.to_csv(’train_labels.csv’, index=None)

35 with open("classes.csv", mode=’w’, newline=’’) as class_file:

36 class_writer = csv.writer(class_file,delimiter=",",quotechar=’"’,quoting=csv.QUOTE_MINIMAL)

37 class_writer.writerow(["pea", 0])

38

39 print(’Successfully converted xml to csv.’)

detectPeas.py

Appendix 29

1 ##

2 #Author: Joshua Gardner

3 #Loads model and classes to detect pea objects in images

4 ##

5 import os

6 import tensorflow as tf

7 from tensorflow import keras

8 import pandas as pd

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import cv2

12 import argparse

13 from keras_retinanet import models

14 from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image

15 from keras_retinanet.utils.visualization import draw_box, draw_caption

16 from keras_retinanet.utils.colors import label_color

17

18 CLASSES_FILE = "classes.csv"

19 #sorts through snapshot folder to find latest trained model

20 model_path = os.path.join(’snapshots’, sorted(os.listdir(’snapshots’),reverse=True)[0])

21 model = models.load_model(model_path,backbone_name ="resnet50")

22 model = models.convert_model(model)

23 labels_to_name = pd.read_csv(CLASSES_FILE, header= None).T.loc[0].to_dict()

24

25 THRES_SCORE = 0.6

26 #prepares image for detection model, draws boxes and predicition scores and saves the image

27 def detect_objects(aImg):

28 imgName = aImg

29 image = read_image_bgr(os.path.join(path,aImg + ".png"))

30 draw = image.copy()

31 draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)

32 image = preprocess_image(image)

33 image, scale = resize_image(image)

34 boxes, scores, labels = model.predict_on_batch(np.expand_dims(image,axis=0))

35 boxes /=scale

36 for box, score, label in zip(boxes[0], scores[0], labels[0]):

37 if score < THRES_SCORE:

38 break

39 color = label_color(label)

40 b = box.astype(int)

41 draw_box(draw, b, color=color)

42 caption = "{} {:.3f}".format(labels_to_name[label], score)

43 draw_caption(draw, b , caption)

44 cv2.imwrite(os.path.join("Data","Detected",imgName+".png"),draw)

45

46 path = "Data/Slices/train"

47 for img in os.listdir(path):

48 if img[−4:] == ".png" and img[:1] == "R":

49 detect_objects(img[:−4])

displayResults.py
1 ##

2 # Author: Josh Gardner

3 # Displays detected results against actual locations in the images

4 ##

5 import matplotlib.pyplot as plt

6 import os

7

8 detectPath = "Data/Detected"

9 locPath = "Data/Located_Peas/test"

10 #Display images of detected objects along side actual locations

11 for img in os.listdir(detectPath):

12 if os.path.isfile(os.path.join(detectPath, img)):

13 imgName = img[:−4]

14 im1 = plt.imread(os.path.join(detectPath, img))

Appendix 30

15 im2 = plt.imread(os.path.join(locPath, imgName+".png"))

16 fig = plt.figure()

17 a = fig.add_subplot(1, 2, 1)

18 imgplt = plt.imshow(im1)

19 plt.axis(’off’)

20 a.set_title("Detected peas")

21 a = fig.add_subplot(1,2,2)

22 imgplot = plt.imshow(im2)

23 plt.axis(’off’)

24 plt.show()

Acronyms

CT computed tomography.

MRI magnetic resonance imaging.

CSV Comma-Separated Values.

FAIR Facebook AI Research.

HOG Histogram of oriented gradients.

CNN Convolutional neural network.

NN Neural network.

R-CNN Regions with Convolutional Neural Network.

COCO Common Objects in Context.

ROI Region of Interest.

RPN Region Proposal Network.

YOLO You Only Look Once.

mAP mean Average Precision.

SVM Support vector machine.

Acronyms 31

VOC PASCAL Visual Object Classes Challenge.

fps frames per second.

FPN Feature Pyramid Network.

TSV Tab-separated values.

XML Extensible Markup Language.

Acronyms 32

Bibliography

[1] N.I Glumov, E.I. Kolomiyetz and V. V. Sergeyev. ‘Detection of objects on

the image using a sliding window mode’. In: 27.4 (1995). Optics and

Image Processing in Russia, pp. 241–249.

[2] Anchor Boxes for Object Detection. (Accessed 30/5/2020). URL: https:

//uk.mathworks.com/help/vision/ug/anchor-boxes-for-object-

detection.html.

[3] Moses Olafenwa. Object Detection with 10 lines of code. Jun 16, 2018

(Accessed 30/5/2020). URL: https://towardsdatascience.com/object-

detection-with-10-lines-of-code-d6cb4d86f606.

[4] P. Viola and M. Jones. ‘Rapid object detection using a boosted cascade

of simple features’. In: Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. CVPR 2001.

Vol. 1. 2001, pp. I–I.

[5] Audrius Bukis et al. ‘Survey of face detection and recognition meth-

ods’. In: The 6th International Conference on Electrical and Control

Technologies (May 2011).

[6] N. Dalal and B. Triggs. ‘Histograms of oriented gradients for human

detection’. In: 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1.

[7] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2014.

[8] R. Girshick et al. ‘Rich Feature Hierarchies for Accurate Object Detection

and Semantic Segmentation’. In: 2014 IEEE Conference on Computer

Vision and Pattern Recognition. 2014, pp. 580–587.

[9] R. Girshick. ‘Fast R-CNN’. In: 2015 IEEE International Conference on

Computer Vision (ICCV). 2015, pp. 1440–1448.

33

https://uk.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html
https://uk.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html
https://uk.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html
https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606
https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606

[10] S. Ren et al. ‘Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks’. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 39.6 (2017), pp. 1137–1149.

[11] J. Redmon et al. ‘You Only Look Once: Unified, Real-Time Object De-

tection’. In: 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2016, pp. 779–788.

[12] T. Lin et al. ‘Focal Loss for Dense Object Detection’. In: 2017 IEEE

International Conference on Computer Vision (ICCV). 2017, pp. 2999–

3007.

[13] T. Lin et al. ‘Feature Pyramid Networks for Object Detection’. In: 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2017, pp. 936–944.

BIBLIOGRAPHY 34

BIBLIOGRAPHY 35

	Title Page
	Statement of Originality & Availability
	Abstract
	1 Introduction
	1.1 Medical Imaging
	1.2 Applications of object detection in medical imaging
	1.3 Project Goals
	1.4 Contents

	2 Object Detection
	2.1 Challenges with object detection
	2.2 Machine Learning approach
	2.3 Deep Learning

	3 RetinaNet
	3.1 Feature Pyramid Networks
	3.2 Focal Loss
	3.3 Analysis on RetinaNet

	4 Detecting Peas in MRI scans of the stomach
	4.1 Preparing the data
	4.2 Classifying the peas
	4.3 Testing the model
	4.4 Analysing the data

	5 Results and evaluation
	6 Conclusion
	7 Appendix

